Water quality and contaminants

Parameters for drinking water quality typically fall under three categories: physical chemical microbiological. Physical and chemical parameters include heavy metals, trace organic compounds, total suspended solids (TSS), and turbidity. Microbiological parameters include Coliform bacteria, E. coli, and specific pathogenic species of bacteria (such as cholera-causing Vibrio cholerae), viruses, and protozoan parasites. Chemical parameters tend to pose more of a chronic health risk through buildup of heavy metals although some components like nitrates/nitrites and arsenic can have a more immediate impact. Physical parameters affect the aesthetics and taste of the drinking water and may complicate the removal of microbial pathogens. Originally, fecal contamination was determined with the presence of coliform bacteria, a convenient marker for a class of harmful fecal pathogens. The presence of fecal coliforms (like E. Coli) serves as an indication of contamination by sewage. Additional contaminants include protozoan oocysts such as Cryptosporidium sp., Giardia lamblia, Legionella, and viruses (enteric).[35] Microbial pathogenic parameters are typically of greatest concern because of their immediate health risk. Throughout most of the world, the most common contamination of raw water sources is from human sewage and in particular human faecal pathogens and parasites. In 2006, waterborne diseases were estimated to cause 1.8 million deaths each year while about 1.1 billion people lacked proper drinking water.[36] It is clear that people in the developing world need to have access to good quality water in sufficient quantity, water purification technology and availability and distribution systems for water. In many parts of the world the only sources of water are from small streams

ften directly contaminated by sewage. There is increasing concern over the health effects of engineered nanoparticles (ENPs) released into the natural environment. One potential indirect exposure route is through the consumption of contaminated drinking waters. In order to address these concerns, the U.K. Drinking Water Inspectorate (DWI) has published a "Review of the risks posed to drinking water by man-made nanoparticles" (DWI 70/2/246). The study, which was funded by the Department for Food and Rural Affairs (Defra), was undertaken by the Food and Environment Research Agency (Fera) in collaboration with a multi-disciplinary team of experts including scientists from the Institute of Occupational Medicine/SAFENANO. The study explored the potential for ENPs to contaminate drinking water supplies and to establish the significance of the drinking water exposure route compared to other routes of exposure. Safety indicators Access to safe drinking water is indicated by proper sanitary sources. These improved drinking water sources include household connection, public standpipe, borehole condition, protected dug well, protected spring, and rain water collection. Sources that don't encourage improved drinking water to the same extent as previously mentioned include: unprotected wells, unprotected springs, rivers or ponds, vender-provided water, bottled water (consequential of limitations in quantity, not quality of water), and tanker truck water. Access to sanitary water comes hand in hand with access to improved sanitation facilities for excreta. These facilities include connection to public sewer, connection to septic system, pour-flush latrine, and ventilated improved pit latrine. Unimproved sanitation facilities are: public or shared latrine, open pit latrine, or bucket latrine.