Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and the Sun and the rotation of the Earth. Some shorelines experience two almost equal high tides and two low tides each day, called a semi-diurnal tide. Some locations experience only one high and one low tide each day, called a diurnal tide. Some locations experience two uneven tides a day, or sometimes one high and one low each day; this is called a mixed tide. The times and amplitude of the tides at a locale are influenced by the alignment of the Sun and Moon, by the pattern of tides in the deep ocean, by the amphidromic systems of the oceans, and by the shape of the coastline and near-shore bathymetry (see Timing).[1][2][3] Tides vary on timescales ranging from hours to years due to numerous influences. To make accurate records, tide gauges at fixed stations measure the water level over time. Gauges ignore variations caused by waves with periods shorter than minutes. These data are compared to the reference (or datum) level usually called mean sea level.[4] While tides are usually the largest source of short-term sea-level fluctuations, sea levels are also subject to forces such as wind and barometric pressure changes, resulting in storm surges, especially in shallow seas and near coasts. Tidal phenomena are not limited to the oceans, but can occur in other systems whenever a gravitational field that varies in time and space is present. For example, the solid part of the Earth is affected by tides, though this is not as easily seen as the water tidal movements. The Moon is the only natural satellite of the Earth,[d][7] and the fifth largest satellite in the Solar System. It is the largest natural satellite of a planet in the Solar System relative to the size of its primary,[e] having 27% the diameter and 60% the density of Earth, resulting in 1?81 its mass. The Moon is the second densest satellite after Io, a satellite of Jupiter. The Moon is in synchronous rotation with Earth, always showing the same face with its near side marked by dark volcanic maria that fill between the bright ancient crustal highlands and the prominent impact craters. It is the brightest object in the sky after the Sun, although its surface is actually very dark, with a reflectance similar to that of coal. Its prominence in the sky and ts regular cycle of phases have, since ancient times, made the Moon an important cultural influence on language, calendars, art and mythology. The Moon's gravitational influence produces the ocean tides and the minute lengthening of the day. The Moon's current orbital distance, about thirty times the diameter of the Earth, causes it to appear almost the same size in the sky as the Sun, allowing it to cover the Sun nearly precisely in total solar eclipses. This matching of apparent visual size is a coincidence. The Moon's linear distance from the Earth is currently increasing at a rate of 3.82±0.07cm per year, however this rate is not constant. The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields.[12][13] It has a diameter of about 1,392,684 km,[5] about 109 times that of Earth, and its mass (about 2?1030 kilograms, 330,000 times that of Earth) accounts for about 99.86% of the total mass of the Solar System.[14] Chemically, about three quarters of the Sun's mass consists of hydrogen, while the rest is mostly helium. The remainder (1.69%, which nonetheless equals 5,628 times the mass of Earth) consists of heavier elements, including oxygen, carbon, neon and iron, among others.[15] The Sun formed about 4.6 billion years ago from the gravitational collapse of a region within a large molecular cloud. Most of the matter gathered in the center, while the rest flattened into an orbiting disk that would become the Solar System. The central mass became increasingly hot and dense, eventually initiating thermonuclear fusion in its core. It is thought that almost all other stars form by this process. The Sun's stellar classification, based on spectral class, is G2V, and is informally designated as a yellow dwarf, because its visible radiation is most intense in the yellow-green portion of the spectrum and although its color is white, from the surface of the Earth it may appear yellow because of atmospheric scattering of blue light.[16] In the spectral class label, G2 indicates its surface temperature of approximately 5778 K (5505 °C), and V indicates that the Sun, like most stars, is a main-sequence star, and thus generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen each second.